Symbol detection in online handwritten graphics using Faster R-CNN

نویسندگان

  • Frank D. Julca-Aguilar
  • Nina Sumiko Tomita Hirata
چکیده

Symbol detection techniques in online handwritten graphics (e.g. diagrams and mathematical expressions) consist of methods specifically designed for a single graphic type. In this work, we evaluate the Faster R-CNN object detection algorithm as a general method for detection of symbols in handwritten graphics. We evaluate different configurations of the Faster R-CNN method, and point out issues relative to the handwritten nature of the data. Considering the online recognition context, we evaluate efficiency and accuracy trade-offs of using Deep Neural Networks of different complexities as feature extractors. We evaluate the method on publicly available flowchart and mathematical expression (CROHME-2016) datasets. Results show that Faster R-CNN can be effectively used on both datasets, enabling the possibility of developing general methods for symbol detection, and furthermore, general graphic understanding methods that could be built on top of the algorithm. Keywords-Handwriting recognition; symbol recognition; object detection; Faster R-CNN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face R-CNN

Faster R-CNN is one of the most representative and successful methods for object detection, and has been becoming increasingly popular in various objection detection applications. In this report, we propose a robust deep face detection approach based on Faster R-CNN. In our approach, we exploit several new techniques including new multi-task loss function design, online hard example mining, and...

متن کامل

A Vehicle Detection Approach using Deep Learning Methodologies

The purpose of this study is to successfully train our vehicle detector using R-CNN, Faster R-CNN deep learning methods on a sample vehicle data sets and to optimize the success rate of the trained detector by providing efficient results for vehicle detection by testing the trained vehicle detector on the test data. The working method consists of six main stages. These are respectively; loading...

متن کامل

Object Detection in Video using Faster R-CNN

Convolutional neural networks (CNN) currently dominate the computer vision landscape. Recently, a CNN based model, Faster R-CNN [1], achieved stateof-the-art performance at object detection on the PASCAL VOC 2007 and 2012 datasets. It combines region proposal generation with object detection on a single frame in less than 200ms. We apply the Faster R-CNN model to video clips from the ImageNet 2...

متن کامل

Towards an art based mathematical editor, that uses on-line handwritten symbol recognition

-A new mathematical editor, based on the recognition of run-on discrete handwritten symbols, is proposed. The tested laboratory prototype of the system, modular and adaptable to the user habits and site requirements, uses a natural handwriting interface as well as human gestures. Two methods were used for symbol recognition, namely the state-of-the-art elastic matching algorithm and an Adaptive...

متن کامل

CNN-Based Automatic Urinary Particles Recognition

The urine sediment analysis of particles in microscopic images can assist physicians in evaluating patients with renal and urinary tract diseases. Manual urine sediment examination is labor-intensive, subjective and time-consuming, and the traditional automatic algorithms often extract the hand-crafted features for recognition. Instead of using the hand-crafted features, in this paper, we explo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.04833  شماره 

صفحات  -

تاریخ انتشار 2017